Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
APMIS ; 131(5): 197-205, 2023 May.
Article in English | MEDLINE | ID: covidwho-2245757

ABSTRACT

Double-stranded RNA (dsRNA) is produced during most viral infections, and immunohistochemical detection of dsRNA has been proposed as a potential screening marker for viral replication. The anti-dsRNA monoclonal antibody clone 9D5 is more sensitive than the established clone J2 but has not been validated in formalin-fixed paraffin-embedded (FFPE) tissue. This study aimed to test and compare the performance of the anti-dsRNA monoclonal antibodies, 9D5 and J2, in FFPE tissue using an automated staining platform. Archived clinical tissue samples with viral infections (n = 34) and uninfected controls (n = 30) were examined. Immunohistochemical staining for dsRNA (9D5 and J2) and virus-specific epitopes was performed. 9D5 provided a similar staining pattern but a higher signal-to-noise ratio than J2. The following proportions of virus-infected tissue samples were dsRNA-positive: SARS-CoV-2 (5/5), HPV (6/6), MCV (5/5), CMV (5/6), HSV (4/6), and EBV (0/6). Also, 18 of 30 uninfected samples were dsRNA positive, and an association between fixation time and intensity was observed. However, signals in all samples were markedly reduced by pretreatment with dsRNA-specific RNAse-III, indicating a specific reaction. In conclusion, dsRNA can be demonstrated in most viral infections with immunohistochemistry in FFPE tissue but with low clinical specificity. The antibody clone 9D5 performs better than clone J2.


Subject(s)
COVID-19 , Virus Diseases , Humans , RNA, Double-Stranded , Paraffin Embedding , SARS-CoV-2 , Formaldehyde
2.
Comput Struct Biotechnol J ; 20: 5256-5263, 2022.
Article in English | MEDLINE | ID: covidwho-2061047

ABSTRACT

Over the past decade, our understanding of human diseases has rapidly grown from the rise of single-cell spatial biology. While conventional tissue imaging has focused on visualizing morphological features, the development of multiplex tissue imaging from fluorescence-based methods to DNA- and mass cytometry-based methods has allowed visualization of over 60 markers on a single tissue section. The advancement of spatial biology with a single-cell resolution has enabled the visualization of cell-cell interactions and the tissue microenvironment, a crucial part to understanding the mechanisms underlying pathogenesis. Alongside the development of extensive marker panels which can distinguish distinct cell phenotypes, multiplex tissue imaging has facilitated the analysis of high dimensional data to identify novel biomarkers and therapeutic targets, while considering the spatial context of the cellular environment. This mini-review provides an overview of the recent advancements in multiplex imaging technologies and examines how these methods have been used in exploring pathogenesis and biomarker discovery in cancer, autoimmune and infectious diseases.

3.
Histochem Cell Biol ; 158(4): 383-388, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2048270

ABSTRACT

Eosin Y is a common stain in histology. Although usually used for colourimetric imaging where the dye is used to stain pink/red a range of structures in the tissue, Eosin Y is also a fluorochrome, and has been used in this manner for decades. In this study our aim was to investigate the fluorescence properties of the dye to enable quantification of structures within formalin-fixed paraffin-embedded (FFPE) tissue sections. To do this, FFPE sections of hamster tissue were prepared with haematoxylin and eosin Y dyes. Spectral detection on a confocal laser scanning microscope was used to obtain the fluorescence emission spectra of the eosin Y under blue light. This showed clear spectral differences between the red blood cells and congealed blood, compared to the rest of the section. The spectra were so distinct that it was possible to discern these in fluorescence and multi-photon microscopy. An image analysis algorithm was used to quantify the red blood cells. These analyses could have broad applications in histopathology where differentiation is required, such as the analysis of clotting disorders to haemorrhage or damage from infectious disease.


Subject(s)
Fluorescent Dyes , Formaldehyde , Eosine Yellowish-(YS) , Lung , Microscopy, Confocal , Paraffin Embedding/methods , Tissue Fixation
4.
Clin Chim Acta ; 532: 181-187, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1966413

ABSTRACT

BACKGROUND: SARS-CoV-2 is an RNA virus that primarily causes respiratory disease; however, infection of other tissue has been reported. Evaluation of SARS-CoV-2 in tissue specimens may increase understanding of SARS-CoV-2 pathobiology. MATERIALS AND METHODS: A qualitative test for detection of SARS-CoV-2 in formalin-fixed paraffin-embedded (FFPE) tissues was developed and validated using droplet digital PCR (ddPCR), which has a lower limit of detection than reverse transcription (RT)-qPCR. After extraction of total RNA from unstained FFPE tissue, SARS-CoV-2 nucleocapsid (N1, N2) target sequences were amplified and quantified, along with human RPP30 as a control using the Bio-Rad SARS-CoV-2 ddPCR kit. RESULTS: SARS-CoV-2 was detected in all 21 known positive samples and none of the 16 negative samples. As few as approximately 5 viral copies were reliably detected. Since January 2021, many tissue types have been clinically tested. Of the 195 clinical specimens, the positivity rate was 35% with placenta and fetal tissue showing the highest percentage of positive cases. CONCLUSION: This sensitive FFPE-based assay has broad clinical utility with applications as diverse as pregnancy loss and evaluation of liver transplant rejection. This assay will aid in understanding atypical presentations of COVID-19 as well as long-term sequelae.


Subject(s)
COVID-19 , RNA, Viral , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , COVID-19/diagnosis , Formaldehyde , Humans , Paraffin Embedding , RNA, Viral/isolation & purification , SARS-CoV-2/genetics
5.
Expert Rev Mol Diagn ; 22(5): 559-574, 2022 05.
Article in English | MEDLINE | ID: covidwho-1878677

ABSTRACT

INTRODUCTION: The emergence of SARS-CoV-2, the causative agent the COVID-19 pandemic, has led to a rapidly expanding arsenal of molecular diagnostic assays for the detection of viral material in tissue specimens. AREAS COVERED: We review the value and shortcomings of available tissue-based assays for SARS-CoV-2 detection in formalin-fixed paraffin-embedded (FFPE) tissue, including immunohistochemistry, in situ hybridization, and quantitative reverse transcription PCR (RT-qPCR). The validation, accuracy, and comparative utility of each method is discussed. Subsequently, we identify commercially available antibodies which render the greatest specificity and reproducibility of staining in FFPE specimens. EXPERT OPINION: We offer expert opinion on the efficacy of such techniques and guidance for future implementation, both clinical and experimental.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Immunohistochemistry , In Situ Hybridization , Pandemics , RNA , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
6.
Viruses ; 14(3)2022 03 14.
Article in English | MEDLINE | ID: covidwho-1742728

ABSTRACT

Among neonates, tested positive for SARS-CoV-2, the majority of infections occur through postpartum transmission. Only few reports describe intrauterine or intrapartum SARS-CoV-2 infections in newborns. To understand the route of transmission, detection of the virus or virus nucleic acid in the placenta and amniotic tissue are of special interest. Current methods to detect SARS-CoV-2 in placental tissue are immunohistochemistry, electron microscopy, in-situ hybridization, polymerase chain reaction (PCR) and next-generation sequencing. Recently, we described an alternative method for the detection of viral ribonucleic acid (RNA), by combination of reverse transcriptase-PCR and mass spectrometry (MS) in oropharyngeal and oral swabs. In this report, we could detect SARS-CoV-2 in formal-fixed and paraffin-embedded (FFPE) placental and amniotic tissue by multiplex RT-PCR MS. Additionally, we could identify the British variant (B.1.1.7) of the virus in this tissue by the same methodology. Combination of RT-PCR with MS is a fast and easy method to detect SARS-CoV-2 viral RNA, including specific variants in FFPE tissue.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , COVID-19/diagnosis , Female , Humans , Infant, Newborn , Mass Spectrometry , Placenta , Pregnancy , Pregnancy Complications, Infectious/diagnosis , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics
7.
Int J Oncol ; 60(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1726130

ABSTRACT

Biobanks constitute an integral part of precision medicine. They provide a repository of biospecimens that may be used to elucidate the pathophysiology, support diagnoses, and guide the treatment of diseases. The pilot biobank of rare malignant neoplasms has been established in the context of the Hellenic Network of Precision Medicine on Cancer and aims to enhance future clinical and/or research studies in Greece by collecting, processing, and storing rare malignant neoplasm samples with associated data. The biobank currently comprises 553 samples; 384 samples of hematopoietic and lymphoid tissue malignancies, 72 samples of pediatric brain tumors and 97 samples of malignant skin neoplasms. In this article, sample collections and their individual significance in clinical research are described in detail along with computational methods developed specifically for this project. A concise review of the Greek biobanking landscape is also delineated, in addition to recommended technologies, methodologies and protocols that were integrated during the creation of the biobank. This project is expected to re­enforce current clinical and research studies, introduce advances in clinical and genetic research and potentially aid in future targeted drug discovery. It is our belief that the future of medical research is entwined with accessible, effective, and ethical biobanking and that our project will facilitate research planning in the '­omic' era by contributing high­quality samples along with their associated data.


Subject(s)
Biological Specimen Banks/trends , Neoplasms/pathology , Precision Medicine/trends , Cell Line, Tumor , Greece , Humans , Precision Medicine/methods
8.
Tuberculosis and Lung Diseases ; 99(11):7-15, 2021.
Article in Russian | Scopus | ID: covidwho-1599972

ABSTRACT

The objective: to perform quantitative analysis of SARS-CoV-2 viral load (VL) levels in lung tissues in deceased patients with COVID-19 and to evaluate its association with the nature of histological changes in the lungs and the duration of stay in ICU till the lethal outcome. Subjects and Methods. Sections of formalin-fixed and paraffin-embedded lung tissues of 36 deceased patients with COVID-19 were used. The SARS-CoV-2 viral load was quantitatively assessed using the original qPCR. VL was calculated using the following formula: copies SARS-CoV-2/copies ABL1 × 100, expressed as the ratio of the true number of SARS-CoV-2 cDNA copies per 100 copies of ABL1 gene cDNA. Results. In cases with no histological changes typical of diffuse alveolar lung injury (DAI), the detection rate of SARS-CoV-2 RNA and the average level of the SARS-CoV-2 viral load were 62.5% (5 out of 8 observations) and 104.75 (range 0-313) copies of SARS-CoV-2 cDNA per 100 copies of human ABL1 gene cDNA. The average level of the SARS-CoV-2 viral load in the lungs with prevailing histological changes characteristic of the proliferative and exudative phases of DAI differed by 60 times and amounted to 909 (18-2,657) and 54,924 (834-250,281) copies of SARS-CoV-2 cDNA per 100 copies of human ABL1 cDNA, respectively. The average duration of stay in the intensive care unit in the group of patients with exudative and proliferative phases of DAI was 10.64 (1-22) and 8.14 (1-21) bed-days, respectively. The detection rate of the SARS-CoV-2 RNA in patients with diffuse alveolar lung injury was 100%. © 2021 New Terra Publishing House. All rights reserved.

9.
Viruses ; 14(1)2021 12 26.
Article in English | MEDLINE | ID: covidwho-1580406

ABSTRACT

Multi-organ failure is one of the common causes of fatal outcome in COVID-19 patients. However, the pathogenetic association of the SARS-CoV-2 viral load (VL) level with fatal dysfunctions of the lungs, liver, kidneys, heart, spleen and brain, as well as with the risk of death in COVID-19 patients remains poorly understood. SARS-CoV-2 VL in the lungs, heart, liver, kidneys, brain, spleen and lymph nodes have been measured by RT qPCR using the following formula: NSARS-CoV-2/NABL1 × 100. Dissemination of SARS-CoV-2 in 30.5% of cases was mono-organ, and in 63.9% of cases, it was multi-organ. The average SARS-CoV-2 VL in the exudative phase of diffuse alveolar damage (DAD) was 60 times higher than in the proliferative phase. The SARS-CoV-2 VL in the lungs ranged from 0 to 250,281 copies. The "pulmonary factors" of SARS-CoV-2 multi-organ dissemination are the high level of SARS-CoV-2 VL (≥4909) and the exudative phase of DAD. The frequency of SARS-CoV-2 dissemination to lymph nodes was 86.9%, heart-56.5%, spleen-52.2%, liver-47.8%, kidney-26%, and brain-13%. We found no link between the SARS-CoV-2 VL level in the liver, kidneys, and heart and the serum level of CPK, LDH, ALP, ALT, AST and Cr of COVID-19 patients. Isolated detection of SARS-CoV-2 RNA in the myocardium of COVID-19 patients who died from heart failure is possible. The pathogenesis of COVID-19-associated multi-organ failure requires further research in a larger cohort of patients.


Subject(s)
COVID-19/virology , Lung/virology , Multiple Organ Failure/virology , SARS-CoV-2/pathogenicity , Aged , Aged, 80 and over , Autopsy , COVID-19/pathology , Female , Humans , Lung/pathology , Male , Middle Aged , Multiple Organ Failure/pathology , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Viral Load , Viral Proteins/metabolism
10.
Cell Genom ; 1(3): 100065, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1561400

ABSTRACT

Formalin-fixed paraffin embedding (FFPE) is the most widespread long-term tissue preservation approach. Here, we report a procedure to perform genome-wide spatial analysis of mRNA in FFPE-fixed tissue sections, using well-established, commercially available methods for imaging and spatial barcoding using slides spotted with barcoded oligo(dT) probes to capture the 3' end of mRNA molecules in tissue sections. We applied this method for expression profiling and cell type mapping in coronal sections from the mouse brain to demonstrate the method's capability to delineate anatomical regions from a molecular perspective. We also profiled the spatial composition of transcriptomic signatures in two ovarian carcinosarcoma samples, exemplifying the method's potential to elucidate molecular mechanisms in heterogeneous clinical samples. Finally, we demonstrate the applicability of the assay to characterize human lung and kidney organoids and a human lung biopsy specimen infected with SARS-CoV-2. We anticipate that genome-wide spatial gene expression profiling in FFPE biospecimens will be used for retrospective analysis of biobank samples, which will facilitate longitudinal studies of biological processes and biomarker discovery.

11.
Cells ; 10(8)2021 07 27.
Article in English | MEDLINE | ID: covidwho-1335012

ABSTRACT

Multiorgan tropism of SARS-CoV-2 has previously been shown for several major organs. We have comprehensively analyzed 25 different formalin-fixed paraffin-embedded (FFPE) tissues/organs from autopsies of fatal COVID-19 cases (n = 8), using histopathological assessment, detection of SARS-CoV-2 RNA using polymerase chain reaction and RNA in situ hybridization, viral protein using immunohistochemistry, and virus particles using transmission electron microscopy. SARS-CoV-2 RNA was mainly localized in epithelial cells across all organs. Next to lung, trachea, kidney, heart, or liver, viral RNA was also found in tonsils, salivary glands, oropharynx, thyroid, adrenal gland, testicles, prostate, ovaries, small bowel, lymph nodes, skin and skeletal muscle. Viral RNA was predominantly found in cells expressing ACE2, TMPRSS2, or both. The SARS-CoV-2 replicating RNA was also detected in these organs. Immunohistochemistry and electron microscopy were not suitable for reliable and specific SARS-CoV-2 detection in autopsies. These findings were validated using in situ hybridization on external COVID-19 autopsy samples (n = 9). Apart from the lung, correlation of viral detection and histopathological assessment did not reveal any specific alterations that could be attributed to SARS-CoV-2. In summary, SARS-CoV-2 and its replication could be observed across all organ systems, which co-localizes with ACE2 and TMPRSS2 mainly in epithelial but also in mesenchymal and endothelial cells. Apart from the respiratory tract, no specific (histo-)morphologic alterations could be assigned to the SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/metabolism , Endothelial Cells/metabolism , RNA, Viral/analysis , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Aged , Autopsy , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Endothelial Cells/pathology , Endothelial Cells/virology , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Organ Specificity , Tropism
12.
J Mol Diagn ; 23(9): 1065-1077, 2021 09.
Article in English | MEDLINE | ID: covidwho-1318904

ABSTRACT

Implementation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the daily practice of pathology laboratories requires procedure adaptation to formalin-fixed, paraffin-embedded (FFPE) samples. So far, one study reported the feasibility of SARS-CoV-2 genome sequencing on FFPE tissues with only one contributory case of two. This study optimized SARS-CoV-2 genome sequencing using the Ion AmpliSeq SARS-CoV-2 Panel on 22 FFPE lung tissues from 16 deceased coronavirus disease 2019 (COVID-19) patients. SARS-CoV-2 was detected in all FFPE blocks using a real-time RT-qPCR targeting the E gene with crossing point (Cp) values ranging from 16.02 to 34.16. Sequencing was considered as contributory (i.e. with a uniformity >55%) for 17 FFPE blocks. Adapting the number of target amplification PCR cycles according to the RT-qPCR Cp values allowed optimization of the sequencing quality for the contributory blocks (i.e. 20 PCR cycles for blocks with a Cp value <28 and 25 PCR cycles for blocks with a Cp value between 28 and 30). Most blocks with a Cp value >30 were non-contributory. Comparison of matched frozen and FFPE tissues revealed discordance for only three FFPE blocks, all with a Cp value >28. Variant identification and clade classification was possible for 13 patients. This study validates SARS-CoV-2 genome sequencing on FFPE blocks and opens the possibility to explore correlation between virus genotype and histopathologic lesions.


Subject(s)
COVID-19/virology , Genome, Viral/genetics , Lung/virology , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Autopsy , COVID-19/pathology , Formaldehyde , High-Throughput Nucleotide Sequencing/methods , Humans , Lung/pathology , Paraffin Embedding , SARS-CoV-2/isolation & purification , Tissue Fixation/methods
13.
Am J Clin Pathol ; 154(2): 190-200, 2020 07 07.
Article in English | MEDLINE | ID: covidwho-377954

ABSTRACT

OBJECTIVES: To report methods and findings of 2 autopsies with molecular evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive individuals. METHODS: Postmortem examination was completed following Centers for Disease Control and Prevention public guidelines. Numerous formalin-fixed paraffin-embedded (FFPE) tissue types from each case were surveyed for SARS-CoV-2 RNA by quantitative reverse transcription polymerase chain reaction (qRT-PCR). SARS-CoV-2 viral genome was sequenced by next-generation sequencing (NGS) from FFPE lung tissue blocks. RESULTS: Postmortem examinations revealed diffuse alveolar damage, while no viral-associated hepatic, cardiac, or renal damage was observed. Viral RNA was detected in lungs, bronchi, lymph nodes, and spleen in both cases using qRT-PCR method. RNA sequencing using NGS in case 1 revealed mutations most consistent with Western European Clade A2a with ORF1a L3606F mutation. CONCLUSIONS: SARS-CoV-2 testing and viral sequencing can be performed from FFPE tissue. Detection and sequencing of SARS-CoV-2 in combination with morphological findings from postmortem tissue examination can aid in gaining a better understanding of the virus's pathophysiologic effects on human health.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Lung/pathology , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , Aged, 80 and over , Autopsy , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Coronavirus Infections/pathology , Coronavirus Infections/virology , Fatal Outcome , High-Throughput Nucleotide Sequencing , Humans , Lung/virology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/analysis , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sequence Analysis, RNA/methods , Tissue Fixation/methods
SELECTION OF CITATIONS
SEARCH DETAIL